Conformal Field Theory and Gravity

Solutions to Problem Set 1 Fall 2024

1. The variational principle of General Relativity

(a)

(b)
()

This follows from 0(v/—gg"*R,.) = 0(v/—9)R + /—9R,.06"" + /—gg""dR,,, and
0(v/=9) = —5V=99u09"".

This follows from some straightforward algebra after plugging 5Ff;l, in R,
Expanding ¢,, = . + en,n,, one obtains that the n,n, terms cancel out and
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0SEn = e.o.m. + /dd_lxﬁ(n’\v’””vyégM — nA’yWVAégW) (1)

Using the Dirichlet boundary condition, the first term vanishes and we obtain the
desired result.

After straight-forward computation,
K, =V,n,+V,n, — %(nun”vpny +n,nV,n, +n,n,V,n’ +n,n,V,n’) (2)

The last two terms vanish because n,V,n? = %Va(npn”) =0
Using the hint,
V., =V, )V, f+aV,V,f= ényvua +V, V., f (3)
Thus,
V.un, —Vyn, = é (n, Vo0 —n,Vya) (4)
Also, using n, = oV, f,

n)‘n,,VAnu = n’\ny(v,\a)vuf + om’\n,,V)\V“f
=1, (VaQ)Vuf + 1,V (aVaf) — n*n,(V,a)Vaf
——r
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1 1
= —n,n,n ' Vya — —en,V ,a
1 I
« Q

where in going from the first to the second line we interchange the A and p derivatives

of the second term and introduced « in the first derivative, and from the second to
the third we used n*Vny = 0 and n*V,f = Ln*n, = Le. Thus,

e(n’\nl,V,\nu — n’\nuv,\ny) =——n,V,a+—n,V,« (6)
o o
since €2 = 1. This is precisely the opposite of , giving the desired result.
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(f)

We have

K =¢"K,, = Vt'n, — en’\n“v,\nu

=g¢""V,yn, —enn"V,n, = yl’#vyn“

(7)

With Dirichlet boundary conditions, the only varying quantity is V ~ 0 + I'. The

derivative piece 0 does not vary under metric variations, thus

1
0K =~",0l') n” = §npva5gw

(8)

where in the last equality we used oI, = 20" (Vy0gpr +V 00, — V:0g,,), the first

and third contribution cancelling each other.
To recap, we've shown in part (c) that,
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0SEg = e.o.m. —

and in part (f) that,
1
0K = énA7“”VA5gMV

Thus, by defining
€

— d—1
SGHY = 87TG /d xﬁK

We have that with Dirichlet boundary conditions, d(y/7) = 0 and thus,
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5SGHY == /ddlxﬁn’\y”’jv,\églw

which cures the variational principle of GR,

d(Sen + Scuy)

= €.0.1mn.
09ur=0 on the boundary

(13)



2. ADM energy

(a)

On S? we will use capital indices we have the metric oap = diag(r?, 72 sin(9)). The
normal vector at any point, living in the 3D space ¥; is

2M
r

(0, = (1= 2+ O(r))(@,) (14)

=

o= (1-

)

Here capital indices denote objects living on S?, while normal latin indices denote
objects living on ¥; Therefore, the extrinsic curvature kg is

1 1 2 M
ks = EO'AB,CU(O'AB) = §O'ABOT8TO'AB = ;(1 — 7) (15)
Subtracting the contribution from Minkowski space, we get kg — k% = _2r_1\24, and
we can compute the integral
1 L 2M
Eapy = _grlggo@m“ )(_7) =M (16)

The term containing the momentum 7% can be neglected since N; is exactly zero in
these coordinates.

From the first hint, we get j¢ = V,Vk?.
Conservation follows from the second hint and the fact that V?k® is antisymmetric
due to the Killing equation V@k® = 0. Indeed

Vaj* = VoV Ve = 0 (17)
The Komar mass is

1
EylS] =, /E Vh nV, V. k"

1
_471' )

Vo oV .k

where in the second line we used Stoke’s theorem on 3.

On a curved spacetime, the a timelike Killing vector generalises the usual concept
of time translation generator. j* represents the associated Noether current and Ej
the associated conserved charge, i.e. energy.

In fact, the Noether current in flat space is simply j/, = T,,k®, where T, is the stress
tensor. Now, if we use Einstein’s equations, we get
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(Rab - iRgab)k’b = 8_7T<ja - §Rka) (19>
The quantity only differ by a term which is zero in flat space and does not give rise
to any boundary term, hence the currents are equivalent in flat space.

Important comment: while in this exercise we used the fact that k* is a timelike
Killing vector everywhere, one can relax this assumption by requiring that k% is a
Killing vector only at spatial infinity. The formula for the Komar mass [18| can then
still be used as it only relies on the asymptotic data.
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(d) Using n =k = 0, 0 = 0,, the formula above gives

1
E,=— [ o n%®V,k
4 Jos
o ]- . 2 r _ . 2 M
—E}g&(‘lﬂ’f’ J(Ih) = }550(7” )r—g
=M

(20)

(e) Spacetimes with compact spatial slices have no boundary, hence E4py cannot be
defined. Important examples are de Sitter space and all FRW cosmological space-

times with K = +1, since global spatial slices are 3-spheres.

(f) It is only possible to define the Komar mass if the spacetime has a timelike Killing
vector, i.e. it is stationary. Of course, most spacetimes are not stationary (e.g.
expanding cosmological spacetimes), so energy cannot always be defined in this

way.



