
Conformal Field Theory and Gravity
Solutions to Problem Set 1 Fall 2024

1. The variational principle of General Relativity

(a) This follows from δ(
√
−ggµνRµν) = δ(

√
−g)R +

√
−gRµνδg

µν +
√
−ggµνδRµν and

δ(
√
−g) = −1

2

√
−ggµνδg

µν .

(b) This follows from some straightforward algebra after plugging δΓλ
µν in δRµν .

(c) Expanding gµν = γµν + εnµnν , one obtains that the nµnν terms cancel out and

δSEH = e.o.m.+
ε

16πG

∫
dd−1x

√
γ(nλγµν∇νδgµλ − nλγµν∇λδgµν) (1)

Using the Dirichlet boundary condition, the first term vanishes and we obtain the
desired result.

(d) After straight-forward computation,

Kµν = ∇µnν +∇νnµ −
ε

2
(nµn

ρ∇ρnν + nνn
ρ∇ρnν + nρnν∇µn

ρ + nρnµ∇νn
ρ) (2)

The last two terms vanish because nρ∇αn
ρ = 1

2
∇α(nρn

ρ) = 0

(e) Using the hint,

∇µnν = (∇µα)∇νf + α∇µ∇νf =
1

α
nν∇µα +∇µ∇νf (3)

Thus,
∇µnν −∇νnµ =

1

α
(nν∇µα− nµ∇να) (4)

Also, using nµ = α∇µf ,

nλnν∇λnµ = nλnν(∇λα)∇µf + αnλnν∇λ∇µf

= nλnν(∇λα)∇µf + nλnν∇µ(α∇λf︸ ︷︷ ︸
nλ

)− nλnν(∇µα)∇λf

=
1

α
nµnνn

λ∇λα− 1

α
εnν∇µα

(5)

where in going from the first to the second line we interchange the λ and µ derivatives
of the second term and introduced α in the first derivative, and from the second to
the third we used nλ∇nλ = 0 and nλ∇λf = 1

α
nλnλ = 1

α
ε. Thus,

ε(nλnν∇λnµ − nλnµ∇λnν) = − 1

α
nν∇µα +

1

α
nµ∇να (6)

since ε2 = 1. This is precisely the opposite of (4), giving the desired result.
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(f) We have

K = gµνKµν = ∇µnµ − εnλnµ∇λnµ

= gµν∇νnµ − εnµnν∇νnµ = γν
µ∇νn

µ (7)

With Dirichlet boundary conditions, the only varying quantity is ∇ ∼ ∂ + Γ. The
derivative piece ∂ does not vary under metric variations, thus

δK = γν
µδΓ

µ
νρn

ρ =
1

2
nργντ∇ρδgντ (8)

where in the last equality we used δΓµ
νρ =

1
2
gµτ (∇νδgρτ +∇ρδgντ −∇τδgνρ), the first

and third contribution cancelling each other.

(g) To recap, we’ve shown in part (c) that,

δSEH = e.o.m.− ε

16πG

∫
dd−1x

√
γnλγµν∇λδgµν (9)

and in part (f) that,
δK =

1

2
nλγµν∇λδgµν (10)

Thus, by defining
SGHY ≡ ε

8πG

∫
dd−1x

√
γK (11)

We have that with Dirichlet boundary conditions, δ(√γ) = 0 and thus,

δSGHY =
ε

16πG

∫
dd−1x

√
γnλγµν∇λδgµν (12)

which cures the variational principle of GR,

δ(SEH + SGHY)
∣∣∣
δgµν=0 on the boundary

= e.o.m. (13)
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2. ADM energy

(a) On S2
r we will use capital indices we have the metric σAB = diag(r2, r2 sin2(θ)). The

normal vector at any point, living in the 3D space Σt is

σi = (1− 2M

r
)
1
2 (∂r)

i = (1− M

r
+O(r−2))(∂r)

i (14)

Here capital indices denote objects living on S2
r , while normal latin indices denote

objects living on Σt Therefore, the extrinsic curvature kS is

kS =
1

2
σABLσ(σAB) =

1

2
σABσr∂rσAB =

2

r
(1− M

r
) (15)

Subtracting the contribution from Minkowski space, we get kS − k0
S = −2M

r2
, and

we can compute the integral

EADM = − 1

8π
lim
r→∞

(4πr2)(−2M

r2
) = M (16)

The term containing the momentum πij can be neglected since Ni is exactly zero in
these coordinates.

(b) From the first hint, we get ja = ∇b∇akb.
Conservation follows from the second hint and the fact that ∇akb is antisymmetric
due to the Killing equation ∇(akb) = 0. Indeed

∇aj
a = ∇a∇b∇akb = 0 (17)

(c) The Komar mass is

Ek[Σ] =
1

4π

∫
Σ

√
h na∇b∇ak

b

=
1

4π

∫
∂Σ

√
σ naσb∇akb

(18)

where in the second line we used Stoke’s theorem on Σ.
On a curved spacetime, the a timelike Killing vector generalises the usual concept
of time translation generator. ja represents the associated Noether current and Ek

the associated conserved charge, i.e. energy.
In fact, the Noether current in flat space is simply j′a = Tabk

b, where Tab is the stress
tensor. Now, if we use Einstein’s equations, we get

j′a =
1

8π
(Rab −

1

2
Rgab)k

b =
1

8π
(ja −

1

2
Rka) (19)

The quantity only differ by a term which is zero in flat space and does not give rise
to any boundary term, hence the currents are equivalent in flat space.
Important comment: while in this exercise we used the fact that ka is a timelike
Killing vector everywhere, one can relax this assumption by requiring that ka is a
Killing vector only at spatial infinity. The formula for the Komar mass 18 can then
still be used as it only relies on the asymptotic data.
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(d) Using n = k = ∂t, σ = ∂r, the formula above gives

Ek =
1

4π

∫
∂Σ

√
σ naσb∇akb

=
1

4π
lim
r→∞

(4πr2)(Γr
tt) = lim

r→∞
(r2)

M

r2

= M

(20)

(e) Spacetimes with compact spatial slices have no boundary, hence EADM cannot be
defined. Important examples are de Sitter space and all FRW cosmological space-
times with K = +1, since global spatial slices are 3-spheres.

(f) It is only possible to define the Komar mass if the spacetime has a timelike Killing
vector, i.e. it is stationary. Of course, most spacetimes are not stationary (e.g.
expanding cosmological spacetimes), so energy cannot always be defined in this
way.
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