Conformal Field Theory and Gravity

Solutions to Problem Set 1

Fall 2024

1. The variational principle of General Relativity

- (a) This follows from $\delta(\sqrt{-g}g^{\mu\nu}R_{\mu\nu}) = \delta(\sqrt{-g})R + \sqrt{-g}R_{\mu\nu}\delta g^{\mu\nu} + \sqrt{-g}g^{\mu\nu}\delta R_{\mu\nu}$ and $\delta(\sqrt{-g}) = -\frac{1}{2}\sqrt{-g}g_{\mu\nu}\delta g^{\mu\nu}$.
- (b) This follows from some straightforward algebra after plugging $\delta\Gamma^{\lambda}_{\mu\nu}$ in $\delta R_{\mu\nu}$.
- (c) Expanding $g_{\mu\nu} = \gamma_{\mu\nu} + \epsilon n_{\mu}n_{\nu}$, one obtains that the $n_{\mu}n_{\nu}$ terms cancel out and

$$\delta S_{\rm EH} = \text{e.o.m.} + \frac{\epsilon}{16\pi G} \int d^{d-1}x \sqrt{\gamma} (n^{\lambda} \gamma^{\mu\nu} \nabla_{\nu} \delta g_{\mu\lambda} - n^{\lambda} \gamma^{\mu\nu} \nabla_{\lambda} \delta g_{\mu\nu})$$
 (1)

Using the Dirichlet boundary condition, the first term vanishes and we obtain the desired result.

(d) After straight-forward computation,

$$K_{\mu\nu} = \nabla_{\mu}n_{\nu} + \nabla_{\nu}n_{\mu} - \frac{\epsilon}{2}(n_{\mu}n^{\rho}\nabla_{\rho}n_{\nu} + n_{\nu}n^{\rho}\nabla_{\rho}n_{\nu} + n_{\rho}n_{\nu}\nabla_{\mu}n^{\rho} + n_{\rho}n_{\mu}\nabla_{\nu}n^{\rho}) \quad (2)$$

The last two terms vanish because $n_{\rho}\nabla_{\alpha}n^{\rho} = \frac{1}{2}\nabla_{\alpha}(n_{\rho}n^{\rho}) = 0$

(e) Using the hint,

$$\nabla_{\mu} n_{\nu} = (\nabla_{\mu} \alpha) \nabla_{\nu} f + \alpha \nabla_{\mu} \nabla_{\nu} f = \frac{1}{\alpha} n_{\nu} \nabla_{\mu} \alpha + \nabla_{\mu} \nabla_{\nu} f \tag{3}$$

Thus,

$$\nabla_{\mu} n_{\nu} - \nabla_{\nu} n_{\mu} = \frac{1}{\alpha} \left(n_{\nu} \nabla_{\mu} \alpha - n_{\mu} \nabla_{\nu} \alpha \right) \tag{4}$$

Also, using $n_{\mu} = \alpha \nabla_{\mu} f$,

$$n^{\lambda}n_{\nu}\nabla_{\lambda}n_{\mu} = n^{\lambda}n_{\nu}(\nabla_{\lambda}\alpha)\nabla_{\mu}f + \alpha n^{\lambda}n_{\nu}\nabla_{\lambda}\nabla_{\mu}f$$

$$= n^{\lambda}n_{\nu}(\nabla_{\lambda}\alpha)\nabla_{\mu}f + n^{\lambda}n_{\nu}\nabla_{\mu}(\underbrace{\alpha\nabla_{\lambda}f}_{n_{\lambda}}) - n^{\lambda}n_{\nu}(\nabla_{\mu}\alpha)\nabla_{\lambda}f$$

$$= \frac{1}{\alpha}n_{\mu}n_{\nu}n^{\lambda}\nabla_{\lambda}\alpha - \frac{1}{\alpha}\epsilon n_{\nu}\nabla_{\mu}\alpha$$
(5)

where in going from the first to the second line we interchange the λ and μ derivatives of the second term and introduced α in the first derivative, and from the second to the third we used $n^{\lambda}\nabla n_{\lambda} = 0$ and $n^{\lambda}\nabla_{\lambda}f = \frac{1}{\alpha}n^{\lambda}n_{\lambda} = \frac{1}{\alpha}\epsilon$. Thus,

$$\epsilon(n^{\lambda}n_{\nu}\nabla_{\lambda}n_{\mu} - n^{\lambda}n_{\mu}\nabla_{\lambda}n_{\nu}) = -\frac{1}{\alpha}n_{\nu}\nabla_{\mu}\alpha + \frac{1}{\alpha}n_{\mu}\nabla_{\nu}\alpha \tag{6}$$

since $\epsilon^2 = 1$. This is precisely the opposite of (4), giving the desired result.

(f) We have

$$K = g^{\mu\nu} K_{\mu\nu} = \nabla^{\mu} n_{\mu} - \epsilon n^{\lambda} n^{\mu} \nabla_{\lambda} n_{\mu}$$

$$= g^{\mu\nu} \nabla_{\nu} n_{\mu} - \epsilon n^{\mu} n^{\nu} \nabla_{\nu} n_{\mu} = \gamma^{\nu}_{\ \mu} \nabla_{\nu} n^{\mu}$$
 (7)

With Dirichlet boundary conditions, the only varying quantity is $\nabla \sim \partial + \Gamma$. The derivative piece ∂ does not vary under metric variations, thus

$$\delta K = \gamma^{\nu}_{\ \mu} \delta \Gamma^{\mu}_{\nu\rho} n^{\rho} = \frac{1}{2} n^{\rho} \gamma^{\nu\tau} \nabla_{\rho} \delta g_{\nu\tau} \tag{8}$$

where in the last equality we used $\delta\Gamma^{\mu}_{\nu\rho} = \frac{1}{2}g^{\mu\tau}(\nabla_{\nu}\delta g_{\rho\tau} + \nabla_{\rho}\delta g_{\nu\tau} - \nabla_{\tau}\delta g_{\nu\rho})$, the first and third contribution cancelling each other.

(g) To recap, we've shown in part (c) that,

$$\delta S_{\rm EH} = \text{e.o.m.} - \frac{\epsilon}{16\pi G} \int d^{d-1}x \sqrt{\gamma} n^{\lambda} \gamma^{\mu\nu} \nabla_{\lambda} \delta g_{\mu\nu}$$
 (9)

and in part (f) that,

$$\delta K = \frac{1}{2} n^{\lambda} \gamma^{\mu\nu} \nabla_{\lambda} \delta g_{\mu\nu} \tag{10}$$

Thus, by defining

$$S_{\rm GHY} \equiv \frac{\epsilon}{8\pi G} \int d^{d-1}x \sqrt{\gamma} K \tag{11}$$

We have that with Dirichlet boundary conditions, $\delta(\sqrt{\gamma}) = 0$ and thus,

$$\delta S_{\text{GHY}} = \frac{\epsilon}{16\pi G} \int d^{d-1}x \sqrt{\gamma} n^{\lambda} \gamma^{\mu\nu} \nabla_{\lambda} \delta g_{\mu\nu}$$
 (12)

which cures the variational principle of GR,

$$\delta(S_{\rm EH} + S_{\rm GHY})\Big|_{\delta g_{\mu\nu} = 0 \text{ on the boundary}} = \text{e.o.m.}$$
 (13)

2. ADM energy

(a) On S_r^2 we will use capital indices we have the metric $\sigma_{AB} = \text{diag}(r^2, r^2 \sin^2(\theta))$. The normal vector at any point, living in the 3D space Σ_t is

$$\sigma^{i} = (1 - \frac{2M}{r})^{\frac{1}{2}} (\partial_{r})^{i} = (1 - \frac{M}{r} + \mathcal{O}(r^{-2}))(\partial_{r})^{i}$$
(14)

Here capital indices denote objects living on S_r^2 , while normal latin indices denote objects living on Σ_t Therefore, the extrinsic curvature k_S is

$$k_S = \frac{1}{2}\sigma^{AB}\mathcal{L}_{\sigma}(\sigma_{AB}) = \frac{1}{2}\sigma^{AB}\sigma^r\partial_r\sigma_{AB} = \frac{2}{r}(1 - \frac{M}{r})$$
 (15)

Subtracting the contribution from Minkowski space, we get $k_S - k_S^0 = -\frac{2M}{r^2}$, and we can compute the integral

$$E_{ADM} = -\frac{1}{8\pi} \lim_{r \to \infty} (4\pi r^2)(-\frac{2M}{r^2}) = M$$
 (16)

The term containing the momentum π^{ij} can be neglected since N_i is exactly zero in these coordinates.

(b) From the first hint, we get $j^a = \nabla_b \nabla^a k^b$. Conservation follows from the second hint and the fact that $\nabla^a k^b$ is antisymmetric due to the Killing equation $\nabla^{(a} k^{b)} = 0$. Indeed

$$\nabla_a j^a = \nabla_a \nabla_b \nabla^a k^b = 0 \tag{17}$$

(c) The Komar mass is

$$E_{k}[\Sigma] = \frac{1}{4\pi} \int_{\Sigma} \sqrt{h} \ n^{a} \nabla_{b} \nabla_{a} k^{b}$$

$$= \frac{1}{4\pi} \int_{\partial \Sigma} \sqrt{\sigma} \ n^{a} \sigma^{b} \nabla_{a} k_{b}$$
(18)

where in the second line we used Stoke's theorem on Σ .

On a curved spacetime, the a timelike Killing vector generalises the usual concept of time translation generator. j^a represents the associated Noether current and E_k the associated conserved charge, i.e. energy.

In fact, the Noether current in flat space is simply $j'_a = T_{ab}k^b$, where T_{ab} is the stress tensor. Now, if we use Einstein's equations, we get

$$j_a' = \frac{1}{8\pi} (R_{ab} - \frac{1}{2} R g_{ab}) k^b = \frac{1}{8\pi} (j_a - \frac{1}{2} R k_a)$$
 (19)

The quantity only differ by a term which is zero in flat space and does not give rise to any boundary term, hence the currents are equivalent in flat space.

Important comment: while in this exercise we used the fact that k^a is a timelike Killing vector everywhere, one can relax this assumption by requiring that k^a is a Killing vector only at spatial infinity. The formula for the Komar mass 18 can then still be used as it only relies on the asymptotic data.

(d) Using $n = k = \partial_t$, $\sigma = \partial_r$, the formula above gives

$$E_{k} = \frac{1}{4\pi} \int_{\partial \Sigma} \sqrt{\sigma} \ n^{a} \sigma^{b} \nabla_{a} k_{b}$$

$$= \frac{1}{4\pi} \lim_{r \to \infty} (4\pi r^{2}) (\Gamma_{tt}^{r}) = \lim_{r \to \infty} (r^{2}) \frac{M}{r^{2}}$$

$$= M$$
(20)

- (e) Spacetimes with compact spatial slices have no boundary, hence E_{ADM} cannot be defined. Important examples are de Sitter space and all FRW cosmological spacetimes with K=+1, since global spatial slices are 3-spheres.
- (f) It is only possible to define the Komar mass if the spacetime has a timelike Killing vector, i.e. it is stationary. Of course, most spacetimes are not stationary (e.g. expanding cosmological spacetimes), so energy cannot always be defined in this way.